Ebook: History of Continued Fractions and Padé Approximants
Author: Claude Brezinski (auth.)
- Genre: Mathematics // Number Theory
- Tags: Numerical Analysis, Number Theory, Analysis
- Series: Springer Series in Computational Mathematics 12
- Year: 1991
- Publisher: Springer-Verlag Berlin Heidelberg
- City: Berlin; New York
- Edition: 1
- Language: English
- djvu
The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ...
The concept of continued fractions os one of the oldest in the history of mathematics. It can be traced back to Euclid's algorithm for the greatest common divisor or even earlier. Continued fractions and Pade approximants played an important role in the development of many branches of mathematics, such as the spectral theory of operators, and in the solution of famous problems, such as the quadrature of the circle.