Ebook: An Invitation to C*-Algebras
Author: William Arveson (auth.)
- Tags: Mathematics general
- Series: Graduate Texts in Mathematics 39
- Year: 1976
- Publisher: Springer-Verlag New York
- Edition: 1
- Language: English
- djvu
This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.
This book is an introduction to C^*-algebras and their representations on Hilbert spaces. The presentation is as simple and concrete as possible; the book is written for a second-year graduate student who is familiar with the basic results of functional analysis, measure theory and Hilbert spaces. The author does not aim for great generality, but confines himself to the best-known and also to the most important parts of the theory and the applications. Because of the manner in which it is written, the book should be of special interest to physicists for whom it opens an important area of modern mathematics. In particular, chapter 1 can be used as a bare-bones introduction to C^*-algebras where sections 2.1 and 2.3 contain the basic structure thoery for Type 1 von Neumann algebras.