Ebook: Multiple Scale and Singular Perturbation Methods
Author: J. Kevorkian J. D. Cole (auth.)
- Genre: Mathematics // Computational Mathematics
- Tags: Analysis, Applications of Mathematics, Mathematical Methods in Physics, Numerical and Computational Physics, Appl.Mathematics/Computational Methods of Engineering
- Series: Applied Mathematical Sciences 114
- Year: 1996
- Publisher: Springer-Verlag New York
- City: New York
- Edition: 1
- Language: English
- djvu
This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
This book is a revised and updated version, including a substantial portion of new material, of the authors' widely acclaimed earlier text, Perturbation Methods in Applied Mathematics (AMS 34). A new chapter dealing with regular expansions has been added, the discussion of layer-type singular perturbations has been revised, and the coverage of multiple scale and averaging methods has been significantly expanded to reflect recent advances and viewpoints. The result is a comprehensive account of the various perturbation techniques currently used in the sciences and engineering that is suitable both as graduate text and as a reference work on the subject.