Ebook: Around the Research of Vladimir Maz'ya I: Function Spaces
- Genre: Mathematics // Applied Mathematicsematics
- Tags: Analysis, Partial Differential Equations, Functional Analysis, Approximations and Expansions
- Series: International Mathematical Series 11
- Year: 2010
- Publisher: Springer-Verlag New York
- Edition: 1
- Language: English
- pdf
International Mathematical Series Volume 11
Around the Research of Vladimir Ma'z'ya I
Function Spaces
Edited by Ari Laptev
Professor Maz'ya is one of the foremost authorities in various fields of functional analysis and partial differential equations. In particular, Maz'ya is a proiminent figure in the development of the theory of Sobolev spaces. He is the author of the well-known monograph Sobolev Spaces (Springer, 1985).
Professor Maz'ya is one of the foremost authorities in various fields of functional analysis and partial differential equations. In particular, Maz'ya is a proiminent figure in the development of the theory of Sobolev spaces. He is the author of the well-known monograph Sobolev Spaces (Springer, 1985). The following topics are discussed in this volume: Orlicz-Sobolev spaces, weighted Sobolev spaces, Besov spaces with negative exponents, Dirichlet spaces and related variational capacities, classical inequalities, including Hardy inequalities (multidimensional versions, the case of fractional Sobolev spaces etc.), Hardy-Maz'ya-Sobolev inequalities, analogs of Maz'ya's isocapacitary inequalities in a measure-metric space setting, Hardy type, Sobolev, Poincare, and pseudo-Poincare inequalities in different contexts including Riemannian manifolds, measure-metric spaces, fractal domains etc., Mazya's capacitary analogue of the coarea inequality in metric probability spaces, sharp constants, extension operators, geometry of hypersurfaces in Carnot groups, Sobolev homeomorphisms, a converse to the Maz'ya inequality for capacities and applications of Maz'ya's capacity method.
Contributors include: Farit Avkhadiev (Russia) and Ari Laptev (UK—Sweden); Sergey Bobkov (USA) and Boguslaw Zegarlinski (UK); Andrea Cianchi (Italy); Martin Costabel (France), Monique Dauge (France), and Serge Nicaise (France); Stathis Filippas (Greece), Achilles Tertikas (Greece), and Jesper Tidblom (Austria); Rupert L. Frank (USA) and Robert Seiringer (USA); Nicola Garofalo (USA-Italy) and Christina Selby (USA); Vladimir Gol'dshtein (Israel) and Aleksandr Ukhlov (Israel); Niels Jacob (UK) and Rene L. Schilling (Germany); Juha Kinnunen (Finland) and Riikka Korte (Finland); Pekka Koskela (Finland), Michele Miranda Jr. (Italy), and Nageswari Shanmugalingam (USA); Moshe Marcus (Israel) and Laurent Veron (France); Joaquim Martin (Spain) and Mario Milman (USA); Eric Mbakop (USA) and Umberto Mosco (USA ); Emanuel Milman (USA); Laurent Saloff-Coste (USA); Jie Xiao (USA)
Ari Laptev -Imperial College London (UK) and Royal Institute of Technology (Sweden). Ari Laptev is a world-recognized specialist in Spectral Theory of Differential Operators. He is the President of the European Mathematical Society for the period 2007- 2010.
Tamara Rozhkovskaya - Sobolev Institute of Mathematics SB RAS (Russia) and an independent publisher. Editors and Authors are exclusively invited to contribute to volumes highlighting recent advances in various fields of mathematics by the Series Editor and a founder of the IMS Tamara Rozhkovskaya.
Cover image: Vladimir Maz'ya
The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.