本书是高等院校“概率论”基础课的教材。全书共分六章,内容包括:古典概型和概率空间、随机变量和概率分布、随机向量及其分布、数学期望和方差、特征函数和概率极限定理、随机过程简介等。每小节配有练习题,每章配有总习题,书末附有习题答案或提示,供读者参考。本书对概率论的基本内容作了系统而全面的介绍,有许多新的简明讲法,有利于读者更好地理解所学内容和加深对问题本质的理解。本书叙述严谨、推导细致、举例丰富,精选的例题反映了现实生活中的特点,例如:赌博问题、判案问题、官员受贿问题、文物保存问题、遗传模型、收藏问题、敏感问题调查、医药疗效问题等。本书讲述的计算机随机变量函数和随机向量函数的密度的方法是解决较为复杂问题的有力方法。在讲述多元正态分布时,介绍了退化的多元正态分布;在讲述数学期望时,给出了混合分布的数学期望;对中心检限定理介绍了它的背景和应用。本书可作为综合...
本书是高等院校“概率论”基础课的教材。全书共分六章,内容包括:古典概型和概率空间、随机变量和概率分布、随机向量及其分布、数学期望和方差、特征函数和概率极限定理、随机过程简介等。每小节配有练习题,每章配有总习题,书末附有习题答案或提示,供读者参考。本书对概率论的基本内容作了系统而全面的介绍,有许多新的简明讲法,有利于读者更好地理解所学内容和加深对问题本质的理解。本书叙述严谨、推导细致、举例丰富,精选的例题反映了现实生活中的特点,例如:赌博问题、判案问题、官员受贿问题、文物保存问题、遗传模型、收藏问题、敏感问题调查、医药疗效问题等。本书讲述的计算机随机变量函数和随机向量函数的密度的方法是解决较为复杂问题的有力方法。在讲述多元正态分布时,介绍了退化的多元正态分布;在讲述数学期望时,给出了混合分布的数学期望;对中心检限定理介绍了它的背景和应用。本书可作为综合大学、高等师范院校、理工科学大、财经院校本科生“概率论”课程的教材或教学参考书。学习本书的先修课程是高等数学。