Ebook: Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach
Author: Ye Yuan Xin Luo
- Genre: Computers // Software: Systems: scientific computing
- Series: SpringerBriefs in Computer Science
- Year: 2022
- Publisher: Springer
- City: Singapore
- Language: English
- pdf
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.
This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.
The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
Download the book Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)