Ebook: Computer Vision - ECCV 2000: 6th European Conference on Computer Vision Dublin, Ireland, June 26 – July 1, 2000 Proceedings, Part I
- Genre: Education // International Conferences and Symposiums
- Tags: Image Processing and Computer Vision, Pattern Recognition, Computer Graphics, Artificial Intelligence (incl. Robotics)
- Series: Lecture Notes in Computer Science 1842
- Year: 2000
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
Ten years ago, the inaugural European Conference on Computer Vision was held in Antibes, France. Since then, ECCV has been held biennially under the auspices of the European Vision Society at venues around Europe. This year, the privilege of organizing ECCV 2000 falls to Ireland and it is a signal honour for us to host what has become one of the most important events in the calendar of the computer vision community. ECCV is a single-track conference comprising the highest quality, previously unpublished, contributed papers on new and original research in computer vision. This year, 266 papers were submitted and, following a rigorous double-blind review process, with each paper being reviewed by three referees, 116 papers were selected by the Programme Committee for presentation at the conference. The venue for ECCV 2000 is the University of Dublin, Trinity College. - unded in 1592, it is Ireland’s oldest university and has a proud tradition of scholarship in the Arts, Humanities, and Sciences, alike. The Trinity campus, set in the heart of Dublin, is an oasis of tranquility and its beautiful squares, elegant buildings, and tree-lined playing- elds provide the perfect setting for any conference.
The two-volume set LNCS 1842/1843 constitutes the refereed proceedings of the 6th European Conference on Computer Vision, ECCV 2000, held in Dublin, Ireland in June/July 2000. The 116 revised full papers presented were carefully selected from a total of 266 submissions. The two volumes offer topical sections on recognition and modelling; stereoscopic vision; texture and shading; shape; structure from motion; image features; active, real-time, and robot vision; segmentation and grouping; vision systems engineering and evaluation; calibration; medical image understanding; and visual motion.