Online Library TheLib.net » Machine Learning for Knowledge Discovery with R: Methodologies for Modeling, Inference and Prediction
cover of the book Machine Learning for Knowledge Discovery with R: Methodologies for Modeling, Inference and Prediction

Ebook: Machine Learning for Knowledge Discovery with R: Methodologies for Modeling, Inference and Prediction

Author: Kao-Tai Tsai

00
08.02.2024
0
0

Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein.

Key Features:

  • Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies.
  • Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations.
  • Written by statistical data analysis practitioner for practitioners.

The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.

Download the book Machine Learning for Knowledge Discovery with R: Methodologies for Modeling, Inference and Prediction for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen