Ebook: Introduction to p-adic Analytic Number Theory
Author: Maruti Ram Murty
- Series: AMS IP Studies in Advanced Mathematics 27
- Year: 2002
- Publisher: Amer Mathematical Society
- Language: English
- pdf
The main focus of the book is the study of $p$-adic $L$-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences. These congruences are then used to construct the $p$-adic analog of the Riemann zeta function and $p$-adic analogs of Dirichlet's $L$-functions. Featured is a chapter on how to apply the theory of Newton polygons to determine Galois groups of polynomials over the rational number field. As motivation for further study, the final chapter introduces Iwasawa theory.
The book treats the subject informally, making the text accessible to non-experts. It would make a nice independent text for a course geared toward advanced undergraduates through beginning graduate students.