Online Library TheLib.net » Multi-agent machine learning: a reinforcement approach
cover of the book Multi-agent machine learning: a reinforcement approach

Ebook: Multi-agent machine learning: a reinforcement approach

00
07.02.2024
0
0
"Provide an in-depth coverage of multi-player, differential games and Gam theory"--;"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--;Cover; Title Page; Copyright; Preface; References; Chapter 1: A Brief Review of Supervised Learning; 1.1 Least Squares Estimates; 1.2 Recursive Least Squares; 1.3 Least Mean Squares; 1.4 Stochastic Approximation; References; Chapter 2: Single-Agent Reinforcement Learning; 2.1 Introduction; 2.2 n-Armed Bandit Problem; 2.3 The Learning Structure; 2.4 The Value Function; 2.5 The Optimal Value Functions; 2.6 Markov Decision Processes; 2.7 Learning Value Functions; 2.8 Policy Iteration; 2.9 Temporal Difference Learning; 2.10 TD Learning of the State-Action Function; 2.11 Q-Learning.
Download the book Multi-agent machine learning: a reinforcement approach for free or read online
Read Download

Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen