Ebook: Das BUCH der Beweise
- Tags: Mathematical Logic and Foundations, Mathematics general, Number Theory, Geometry, Combinatorics, Analysis
- Year: 2010
- Publisher: Springer Berlin Heidelberg
- Language: German
- pdf
Diese deutlich erweiterte dritte deutsche Auflage von "Das BUCH der Beweise" enthält fünf neue Kapitel, in denen es um Klassiker geht wie den "Fundamentalsatz der Algebra", um kombinatorisch-geometrische Zerlegungsprobleme, aber auch um Beweise aus letzter Zeit, etwa für die "Kneser-Vermutung" in der Graphentheorie.
Die Neuausgabe wartet auch mit weiteren Verbesserungen und Überraschungen auf - darunter ein neuer Beweis für "Hilberts drittes Problem".
Aus den Rezensionen der bisherigen Ausgaben:
"Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999
"Unermüdlich reiste Paul Erdös durch die Welt und stellte neue Theoreme auf. Jetzt haben zwei seiner Kollegen sein schönstes Werk vollendet: Das BUCH der Beweise - ein Feuerwerk mathematischer Geistesblitze. ......" Die Weltwoche 18. April 2002
"... Martin Aigner ... und Günter Ziegler referieren sympathisch einige dieser gottgefälligen Geistesblitze. ... Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch über das BUCH. Um sie genießen zu können, lohnt es sich, das bißchen Mathe nachzuholen, das wir vergessen haben oder das uns von der Schule vorenthalten wurde." Die Zeit, 13.August 1998
...Hier ist es also, das BUCH der Beweise in der wunderbaren Version von Martin Aigner und Günter Ziegler ....Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern. ... www.mathematik.de, Mai 2002