Ebook: Flexible AC Transmission Systems: FACTS
Author: Bjarne Andersen, Stig L. Nilsson
- Year: 2020
- Publisher: Springer International Publishing
- Language: English
- epub
This green book offers the outstanding expertise of CIGRE professionals about FACTS in one concise handbook. It provides the most comprehensive information about HVDC, Power Electronic for AC systems and Power Quality Improvement as well as Advanced Power Electronics to Professionals in Power Industry interested in Power Electronics. It covers a large range of topics such as:
HVDC: economics of HVDC, applications, planning aspects, design, performance, control, protection, control and testing of converter stations, i.e., the converting equipment itself and also the equipment associated with HVDC links.
Power Electronic for AC systems and Power Quality Improvement: economics, applications, planning, design, performance, control, protection, construction and testing.
Advanced Power Electronics: development of new converter technologies including controls, use of new semiconductor devices, applications of these technologies in HVDC, Power Electronics for AC systems and Power Quality Improvement. Power Electronics used in other fields of the Electric Power Industry.
More than 30 technical experts from industry wrote the book for electrical power system engineers, managers, planners, project developers and investors.
04
02
Introduction to Flexible AC Transmission Systems (FACTS) Controllers: A Chronology.- AC System Characteristics.- AC Network Control Using Conventional Means.- AC Network Control Using FACTS Controllers (Flexible AC Transmission Systems).- Power Electronic Topologies for FACTS.- Technical Description of Static Var Compensators (SVC).- Technical Description of Static Compensators (STATCOM).- Technical Description of Thyristor Controlled Series Capacitors (TCSC).- Technical Description of the Unified Power Flow Controller (UPFC) and its Potential Variations.- Controllers Using the Saturation of Iron for AC Network Control.- Development of Magnetically Controlled Shunt Reactors in Russia.- Application examples of SVC.- Application examples of STATCOM.- Application Examples of the Thyristor Controlled Series Capacitor.- Application examples of UPFC and its variants.- Economic Appraisal and Cost–Benefit Analysis.- FACTS Planning Studies.- Environmental Considerations For FACTS Controller Projects.- Procurement and Functional Specifications for FACTS Controllers.- FACTS Controller Integration and Design Studies.- FACTS Equipment Design and Testing.- Commissioning of FACTS Controllers.- Operation of FACTS Controllers.- Lifetime Management of FACTS Controllers.
13
02
CIGRE Study Committee B4 deals with High Voltage Direct Current (HVDC) Transmission and Power Electronics for use in Transmission and Distribution Networks. In a HVDC Transmission system converter, stations are used to convert AC into DC and vice versa at the connection points in the ac network(s). An HVDC system provides an asynchronous link between the ac network terminals. As there is no reactive power flow on the dc link between the converter stations, it is possible to have very long cable and overhead lines between the stations, without the need for intermediate stations. Today there are two main technologies: thyristor based, Line Commutated Converter HVDC (LCC HVDC), and IGBT based Voltage Sourced Converter HVDC (VSC HVDC).
Bjarne R. Andersen is the Director and Owner of Andersen Power Electronic Solutions Limited, which was established in 2003. Before becoming an independent consultant, Bjarne worked for 36 years for what is now GE Grid, where his final role was as Director of Engineering. He was involved with the development of the first chain link STATCOM and the relocatable SVCs concept. Bjarne has extensive experience in all stages of LCC and VSC HVDC projects. As a consultant he has worked on several international HVDC projects, including the Caprivi Link, the first commercial VSC HVDC project to use an HVDC overhead line, and a VSC HVDC project for multi-terminal operation permitting multi-vendor access.
Stig Nilsson, Principal Engineer, Exponent, Inc., USA., started out working for the Swedish State Telephone Board with carrier communication systems. Following this, he worked for ASEA (now ABB) with HVDC systems and for Boeing with computer system developments. During his 20 years with EPRI in USA he initiated in 1979 the development of digital protective relaying system developments and in 1986 EPRI’s FACTS initiative. In 1991 he was awarded a patent on Apparatus for Controlling the Reactive Impedance of a Transmission Line. Stig Nilsson is a Life Fellow of IEEE. He has chaired the IEEE PES T Committee, the IEEE Herman Halperin Electric Transmission and Distribution Award Committee, the IEEE PES Nari Hingorani Facts and Custom Power Awards Committee, several IEEE Fellow nomination review committees, been a member of the IEEE Standards Board, IEEE PES subcommittees and working groups. Stig Nilsson has been the US Representative and Secretary of Cigre Study Committee B4 on HVDC and Power Electronics. He is the recipient of the 2012 IEEE PES Nari Hingorani Facts and Custom Power Awards. He received the Cigre U.S. National Committee Philip Sporn Award and the Cigre Technical Committee Award in 2012. He has also received the Cigre Distinguished Member Award for active participation in Cigre Study Committees and the USNC of Cigre (2006); and the Cigre USNC Attwood Associate Award in 2003. Stig Nilsson is a registered Professional Engineer in the state of California, USA.
19
02
Covers a large range of topics, from design to testing
Offers insights from over 30 technical experts from industry
Includes topics in Advanced Power Electronics
25
02
Pre
99
NL
06
05
300
01
https://covers.springernature.com/boo...
01
01
https://www.springer.com/9783030353865
01
http://www.springer.com/
01
Springer Nature Imprint
SPR
Springer
01
01
SIP
Springer International Publishing
01
05
5251753
Springer International Publishing
Cham
CH
02
20200524
2020
01
WORLD
13
03
9783030353858
15
9783030353858
01
ISBN-13 hyphenated
978-3-030-35385-8
BB
Springer International Publishing
01
ROW
NP
10
20200524
Springer International Publishing
01
US
02
Y
NP
10
20200524
HVDC: economics of HVDC, applications, planning aspects, design, performance, control, protection, control and testing of converter stations, i.e., the converting equipment itself and also the equipment associated with HVDC links.
Power Electronic for AC systems and Power Quality Improvement: economics, applications, planning, design, performance, control, protection, construction and testing.
Advanced Power Electronics: development of new converter technologies including controls, use of new semiconductor devices, applications of these technologies in HVDC, Power Electronics for AC systems and Power Quality Improvement. Power Electronics used in other fields of the Electric Power Industry.
More than 30 technical experts from industry wrote the book for electrical power system engineers, managers, planners, project developers and investors.
04
02
Introduction to Flexible AC Transmission Systems (FACTS) Controllers: A Chronology.- AC System Characteristics.- AC Network Control Using Conventional Means.- AC Network Control Using FACTS Controllers (Flexible AC Transmission Systems).- Power Electronic Topologies for FACTS.- Technical Description of Static Var Compensators (SVC).- Technical Description of Static Compensators (STATCOM).- Technical Description of Thyristor Controlled Series Capacitors (TCSC).- Technical Description of the Unified Power Flow Controller (UPFC) and its Potential Variations.- Controllers Using the Saturation of Iron for AC Network Control.- Development of Magnetically Controlled Shunt Reactors in Russia.- Application examples of SVC.- Application examples of STATCOM.- Application Examples of the Thyristor Controlled Series Capacitor.- Application examples of UPFC and its variants.- Economic Appraisal and Cost–Benefit Analysis.- FACTS Planning Studies.- Environmental Considerations For FACTS Controller Projects.- Procurement and Functional Specifications for FACTS Controllers.- FACTS Controller Integration and Design Studies.- FACTS Equipment Design and Testing.- Commissioning of FACTS Controllers.- Operation of FACTS Controllers.- Lifetime Management of FACTS Controllers.
13
02
CIGRE Study Committee B4 deals with High Voltage Direct Current (HVDC) Transmission and Power Electronics for use in Transmission and Distribution Networks. In a HVDC Transmission system converter, stations are used to convert AC into DC and vice versa at the connection points in the ac network(s). An HVDC system provides an asynchronous link between the ac network terminals. As there is no reactive power flow on the dc link between the converter stations, it is possible to have very long cable and overhead lines between the stations, without the need for intermediate stations. Today there are two main technologies: thyristor based, Line Commutated Converter HVDC (LCC HVDC), and IGBT based Voltage Sourced Converter HVDC (VSC HVDC).
Bjarne R. Andersen is the Director and Owner of Andersen Power Electronic Solutions Limited, which was established in 2003. Before becoming an independent consultant, Bjarne worked for 36 years for what is now GE Grid, where his final role was as Director of Engineering. He was involved with the development of the first chain link STATCOM and the relocatable SVCs concept. Bjarne has extensive experience in all stages of LCC and VSC HVDC projects. As a consultant he has worked on several international HVDC projects, including the Caprivi Link, the first commercial VSC HVDC project to use an HVDC overhead line, and a VSC HVDC project for multi-terminal operation permitting multi-vendor access.
Stig Nilsson, Principal Engineer, Exponent, Inc., USA., started out working for the Swedish State Telephone Board with carrier communication systems. Following this, he worked for ASEA (now ABB) with HVDC systems and for Boeing with computer system developments. During his 20 years with EPRI in USA he initiated in 1979 the development of digital protective relaying system developments and in 1986 EPRI’s FACTS initiative. In 1991 he was awarded a patent on Apparatus for Controlling the Reactive Impedance of a Transmission Line. Stig Nilsson is a Life Fellow of IEEE. He has chaired the IEEE PES T Committee, the IEEE Herman Halperin Electric Transmission and Distribution Award Committee, the IEEE PES Nari Hingorani Facts and Custom Power Awards Committee, several IEEE Fellow nomination review committees, been a member of the IEEE Standards Board, IEEE PES subcommittees and working groups. Stig Nilsson has been the US Representative and Secretary of Cigre Study Committee B4 on HVDC and Power Electronics. He is the recipient of the 2012 IEEE PES Nari Hingorani Facts and Custom Power Awards. He received the Cigre U.S. National Committee Philip Sporn Award and the Cigre Technical Committee Award in 2012. He has also received the Cigre Distinguished Member Award for active participation in Cigre Study Committees and the USNC of Cigre (2006); and the Cigre USNC Attwood Associate Award in 2003. Stig Nilsson is a registered Professional Engineer in the state of California, USA.
19
02
Covers a large range of topics, from design to testing
Offers insights from over 30 technical experts from industry
Includes topics in Advanced Power Electronics
25
02
Pre
99
NL
06
05
300
01
https://covers.springernature.com/boo...
01
01
https://www.springer.com/9783030353865
01
http://www.springer.com/
01
Springer Nature Imprint
SPR
Springer
01
01
SIP
Springer International Publishing
01
05
5251753
Springer International Publishing
Cham
CH
02
20200524
2020
01
WORLD
13
03
9783030353858
15
9783030353858
01
ISBN-13 hyphenated
978-3-030-35385-8
BB
Springer International Publishing
01
ROW
NP
10
20200524
Springer International Publishing
01
US
02
Y
NP
10
20200524
Download the book Flexible AC Transmission Systems: FACTS for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)