Ebook: COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism
Author: Wenzhong Liu Hualan Li
- Genre: Medicine // Infectious diseases
- Tags: novel coronavirus pneumonia, COVID-19
- Year: 2020
- Publisher: Sichuan University of Science & Engineering
- Language: English
- pdf
The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused
by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat
coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking
were used to compare the biological roles of certain proteins of the novel coronavirus. The results
showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively. At the same time,
orf1ab, ORF10, and ORF3a proteins could coordinate attack the heme on the 1-beta chain of
hemoglobin to dissociate the iron to form the porphyrin. The attack will cause less and less hemoglobin
that can carry oxygen and carbon dioxide. The lung cells have extremely intense poisoning and
inflammatory due to the inability to exchange carbon dioxide and oxygen frequently, which eventually
results in ground-glass-like lung images. The mechanism also interfered with the normal heme anabolic
pathway of the human body, is expected to result in human disease. According to the validation
analysis of these finds, chloroquine could prevent orf1ab, ORF3a, and ORF10 to attack the heme to
form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a
certain extent, effectively relieve the symptoms of respiratory distress. Favipiravir could inhibit the
envelope protein and ORF7a protein bind to porphyrin, prevent the virus from entering host cells, and
catching free porphyrins. Because the novel coronavirus is dependent on porphyrins, it may originate
from an ancient virus. Therefore, this research is of high value to contemporary biological experiments,
disease prevention, and clinical treatment.
by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat
coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking
were used to compare the biological roles of certain proteins of the novel coronavirus. The results
showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively. At the same time,
orf1ab, ORF10, and ORF3a proteins could coordinate attack the heme on the 1-beta chain of
hemoglobin to dissociate the iron to form the porphyrin. The attack will cause less and less hemoglobin
that can carry oxygen and carbon dioxide. The lung cells have extremely intense poisoning and
inflammatory due to the inability to exchange carbon dioxide and oxygen frequently, which eventually
results in ground-glass-like lung images. The mechanism also interfered with the normal heme anabolic
pathway of the human body, is expected to result in human disease. According to the validation
analysis of these finds, chloroquine could prevent orf1ab, ORF3a, and ORF10 to attack the heme to
form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a
certain extent, effectively relieve the symptoms of respiratory distress. Favipiravir could inhibit the
envelope protein and ORF7a protein bind to porphyrin, prevent the virus from entering host cells, and
catching free porphyrins. Because the novel coronavirus is dependent on porphyrins, it may originate
from an ancient virus. Therefore, this research is of high value to contemporary biological experiments,
disease prevention, and clinical treatment.
Download the book COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)