Ebook: Deep Learning Architectures - A Mathematical Approach
Author: Ovidiu Calin
- Genre: Mathematics
- Tags: Machine Learning Neural Networks
- Series: Springer Series in the Data Sciences
- Year: 2020
- Publisher: Springer
- Edition: 1
- Language: English
- pdf
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
Download the book Deep Learning Architectures - A Mathematical Approach for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)