Ebook: Practical Time Series Analysis: Prediction with Statistics and Machine Learning
Author: Aileen Nielsen
- Genre: Computers // Cybernetics: Artificial Intelligence
- Tags: Machine Learning, Data Analysis, Neural Networks, Deep Learning, Anomaly Detection, Python, Convolutional Neural Networks, Recurrent Neural Networks, Classification, Clustering, Kalman Filtering, Data Visualization, R, Statistics, Finance, NumPy, pandas, Forecasting, Simulation, Data Wrangling, Model Selection, Healthcare, Prophet, Time Series Analysis, Performance, Markov Models, Feed-forward Neural Networks, Vector Autoregression, ARIMA
- Year: 2019
- Publisher: O’Reilly Media
- City: Sebastopol, CA
- Edition: 1
- Language: English
- pdf
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.
Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.
You’ll get the guidance you need to confidently:
• Find and wrangle time series data
• Undertake exploratory time series data analysis
• Store temporal data
• Simulate time series data
• Generate and select features for a time series
• Measure error
• Forecast and classify time series with machine or deep learning
• Evaluate accuracy and performance
Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.
You’ll get the guidance you need to confidently:
• Find and wrangle time series data
• Undertake exploratory time series data analysis
• Store temporal data
• Simulate time series data
• Generate and select features for a time series
• Measure error
• Forecast and classify time series with machine or deep learning
• Evaluate accuracy and performance
Download the book Practical Time Series Analysis: Prediction with Statistics and Machine Learning for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)