Ebook: Geometric Methods in Algebra and Number Theory
- Genre: Mathematics // Geometry and Topology
- Tags: Algebra, Algebraic Geometry, Number Theory, Geometry
- Series: Progress in Mathematics 235
- Year: 2005
- Publisher: Birkhäuser Basel
- City: Boston
- Edition: 1
- Language: English
- pdf
From the reviews:
“This is a collection of articles on algebraic and arithmetic geometry most of which were presented at a conference that took place in Miami in December 2003. … this volume will be attractive for researchers and graduate students in arithmetic geometry. The surveys provided can serve as an introduction for them and offer guidance for further study.” (Ch. Baxa, Monatshefte für Mathematik, Vol. 152 (1), September, 2007)The transparency and power of geometric constructions has been a source of inspiration for generations of mathematicians; their applications to problems in algebra and number theory date back to Diophantus, if not earlier. Although more sophisticated and subtle constructions have replaced the Greek techniques of intersecting lines and conics, what remains unchallenged is the beauty and persuasion of pictures, communicated in words or drawings.
This volume focuses on the following topics:
* moduli spaces, Shimura varieties, D-modules
* p-adic methods (motivic integration)
* number theoretic applications (rational points)
All papers are strongly influenced by geometric ideas and intuition. The collection as a whole gives a representative sample of modern results and problems in algebraic and arithmetic geometry, and the text can serve as an intense introduction for graduate students and others wishing to pursue research in these areas.
Contributors include: V. Alexeev; L. Berger; J.-B. Bost; M. Brion; C.-L. Chai; T. Hausel; F. Loeser; P. Swinnerton-Dyer; L. Szpiro; and Y. Zarhin