Online Library TheLib.net » Practical Real-time Data Processing and Analytics: Distributed Computing and Event Processing using Apache Spark, Flink, Storm, and Kafka
cover of the book Practical Real-time Data Processing and Analytics: Distributed Computing and Event Processing using Apache Spark, Flink, Storm, and Kafka

Ebook: Practical Real-time Data Processing and Analytics: Distributed Computing and Event Processing using Apache Spark, Flink, Storm, and Kafka

00
29.01.2024
0
0

A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario

About This Book

  • Learn about the various challenges in real-time data processing and use the right tools to overcome them
  • This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems
  • A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time

Who This Book Is For

If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great.

What You Will Learn

  • Get an introduction to the established real-time stack
  • Understand the key integration of all the components
  • Get a thorough understanding of the basic building blocks for real-time solution designing
  • Garnish the search and visualization aspects for your real-time solution
  • Get conceptually and practically acquainted with real-time analytics
  • Be well equipped to apply the knowledge and create your own solutions

In Detail

With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible.

This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own.

We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case.

By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner.

Style and Approach

In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.

Download the book Practical Real-time Data Processing and Analytics: Distributed Computing and Event Processing using Apache Spark, Flink, Storm, and Kafka for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen