Ebook: P-ADIC Properties of Modular Schemes and Modular Forms
Author: Nicholas M. Katz
- Genre: Mathematics
- Tags: Filtration Comp Action Tate Tane Fami
- Series: Lecture Notes in Mathematics 350
- Year: 1973
- Publisher: Springer
- Language: English
- pdf
This expose represents an attempt to understand some of the recent work of Atkin, Swinnerton-Dyer, and Serre on the congruence properties of the q-expansion coefficients of modular forms from the point of view of the theory of moduli of elliptic curves, as developed abstractly by Igusa and recently reconsidered by Deligne. In this optic, a modular form of weight k and level n becomes a section of a certain line bundle ω−⊗k on the modular variety Mn which “classifies” elliptic curves with level n structure (the level n structure is introduced for purely technical reasons). The modular variety Mn is a smooth curve over ℤ[l/n], whose “physical appearance” is the same whether we view it over ℂ (where it becomes ϕ(n) copies of the quotient of the upper half plane by the principal congruence subgroup Г(n) of SL(2,ℤ)) or over the algebraic closure of ℤ/pℤ, (by “reduction modulo p”) for primes p not dividing n. This very fact rules out the possibility of obtaining p-adic properties of modular forms simply by studying the geometry of Mn ⊗ℤ/pℤ and its line bundles ω−⊗k ; we can only obtain the reductions modulo p of identical relations which hold over ℂ.
Download the book P-ADIC Properties of Modular Schemes and Modular Forms for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)