Ebook: Математические методы обучения по прецедентам (теория обучения машин)
Author: Воронцов К.В.
- Genre: Математика // Прикладная математика
- Tags: Математика, Теория принятия решений (ТПР)
- Language: Русский
- pdf
Выходные данные не известны. — 140 с.Введение: задачи обучения по прецедентам.
Основные понятия и определения.
Примеры прикладных задач.
Байесовские методы классификации.
Вероятностная постановка задачи классификации.
Непараметрическая классификация.
Нормальный дискриминантный анализ.
ение смеси распределений.
Метрические методы классификации.
Метод ближайшего соседа и его обобщения.
Отбор эталонных объектов.
Линейные методы классификации.
Аппроксимация и регуляризация эмпирического риска.
Линейная модель классификации.
Метод стохастического градиента.
Логистическая регрессия.
Метод опорных векторов.
ROC-кривая и оптимизация порога решающего правила.
Методы восстановления регрессии.
Метод наименьших квадратов.
Непараметрическая регрессия: ядерное сглаживание.
Линейная регрессия.
Метод главных компонент.
Нелинейные методы восстановления регрессии.
Метод опорных векторов в задачах регрессии.
Искусственные нейронные сети.
Проблема полноты.
Многослойные нейронные сети.
Кластеризация и визуализация.
Алгоритмы кластеризации.
Сети Кохонена.
Многомерное шкалирование.
Основные понятия и определения.
Примеры прикладных задач.
Байесовские методы классификации.
Вероятностная постановка задачи классификации.
Непараметрическая классификация.
Нормальный дискриминантный анализ.
ение смеси распределений.
Метрические методы классификации.
Метод ближайшего соседа и его обобщения.
Отбор эталонных объектов.
Линейные методы классификации.
Аппроксимация и регуляризация эмпирического риска.
Линейная модель классификации.
Метод стохастического градиента.
Логистическая регрессия.
Метод опорных векторов.
ROC-кривая и оптимизация порога решающего правила.
Методы восстановления регрессии.
Метод наименьших квадратов.
Непараметрическая регрессия: ядерное сглаживание.
Линейная регрессия.
Метод главных компонент.
Нелинейные методы восстановления регрессии.
Метод опорных векторов в задачах регрессии.
Искусственные нейронные сети.
Проблема полноты.
Многослойные нейронные сети.
Кластеризация и визуализация.
Алгоритмы кластеризации.
Сети Кохонена.
Многомерное шкалирование.
Download the book Математические методы обучения по прецедентам (теория обучения машин) for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)