Ebook: A theoretical framework for Back-Propagation
Author: Le Cun Y.
- Genre: Computers // Cybernetics: Artificial Intelligence
- Tags: Информатика и вычислительная техника, Искусственный интеллект, Нейронные сети
- Language: English
- djvu
/Proceedings of the 1988 Connectionist Models Summer School, pages 21-28, CMU, Pittsburgh, Pa, 1988Abstract:
Among all the supervised learning algorithms, back propagation (BP) is probably the most widely used. Although numerous experimental works have demonstrated its capabilities, a deeper theoretical understanding of the algorithm is definitely needed. We present a mathematical framework for studying back-propagation based on the Langrangian formalism. In this framework, inspired by optimal control theory, back-propagation is formulated as an optimisation problem with nonlinear constraints. The Lagrange function is the sum of the output objective function and a constraint term which describes the network dynamics.
This approach suggests many natural extensions to the basic algorithm.
It also provides an extremely simple formulation (and derivation) of continuous recurrent network equations as described by Pineda.
Other easily described variations involve either additional terms in the error function, additional constraints on the set of solutions, or transformations of the parameter space. An interesting kind of constraint is an equality constraint among the weights, which can be implemented with little overhead. It is shown that this sort of constraint provides a way of putting apriory knowledge into the network while reducing the number of free parameters.
Among all the supervised learning algorithms, back propagation (BP) is probably the most widely used. Although numerous experimental works have demonstrated its capabilities, a deeper theoretical understanding of the algorithm is definitely needed. We present a mathematical framework for studying back-propagation based on the Langrangian formalism. In this framework, inspired by optimal control theory, back-propagation is formulated as an optimisation problem with nonlinear constraints. The Lagrange function is the sum of the output objective function and a constraint term which describes the network dynamics.
This approach suggests many natural extensions to the basic algorithm.
It also provides an extremely simple formulation (and derivation) of continuous recurrent network equations as described by Pineda.
Other easily described variations involve either additional terms in the error function, additional constraints on the set of solutions, or transformations of the parameter space. An interesting kind of constraint is an equality constraint among the weights, which can be implemented with little overhead. It is shown that this sort of constraint provides a way of putting apriory knowledge into the network while reducing the number of free parameters.
Download the book A theoretical framework for Back-Propagation for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)