Online Library TheLib.net » Modern Solvers for Helmholtz Problems
cover of the book Modern Solvers for Helmholtz Problems

Ebook: Modern Solvers for Helmholtz Problems

00
28.01.2024
0
0

This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts:

new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications.

The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle.

The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.


Download the book Modern Solvers for Helmholtz Problems for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen