Online Library TheLib.net » Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces
cover of the book Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces

Ebook: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces

00
26.01.2024
0
0

"I cannot define coincidence [in mathematics]. But 1 shall argue that coincidence can always be elevated or organized into a superstructure which perfonns a unification along the coincidental elements. The existence of a coincidence is strong evidence for the existence of a covering theory. " -Philip 1. Davis [Dav81] Alluding to the Thomas gyration, this book presents the Theory of gy­ rogroups and gyrovector spaces, taking the reader to the immensity of hyper­ bolic geometry that lies beyond the Einstein special theory of relativity. Soon after its introduction by Einstein in 1905 [Ein05], special relativity theory (as named by Einstein ten years later) became overshadowed by the ap­ pearance of general relativity. Subsequently, the exposition of special relativity followed the lines laid down by Minkowski, in which the role of hyperbolic ge­ ometry is not emphasized. This can doubtlessly be explained by the strangeness and unfamiliarity of hyperbolic geometry [Bar98]. The aim of this book is to reverse the trend of neglecting the role of hy­ perbolic geometry in the special theory of relativity, initiated by Minkowski, by emphasizing the central role that hyperbolic geometry plays in the theory.




Evidence that Einstein's addition is regulated by the Thomas precession has come to light, turning the notorious Thomas precession, previously considered the ugly duckling of special relativity theory, into the beautiful swan of gyrogroup and gyrovector space theory, where it has been extended by abstraction into an automorphism generator, called the Thomas gyration. The Thomas gyration, in turn, allows the introduction of vectors into hyperbolic geometry, where they are called gyrovectors, in such a way that Einstein's velocity additions turns out to be a gyrovector addition. Einstein's addition thus becomes a gyrocommunicative, gyroassociative gyrogroup operation in the same way that ordinary vector addition is a commutative, associative group operation. Some gyrogroups of gyrovectors admit scalar multiplication, giving rise to gyrovector spaces in the same way that some groups of vectors that admit scalar multiplication give rise to vector spaces. Furthermore, gyrovector spaces form the setting for hyperbolic geometry in the same way that vector spaces form the setting for Euclidean geometry. In particular, the gyrovector space with gyrovector addition given by Einstein's (Möbius') addition forms the setting for the Beltrami (Poincaré) ball model of hyperbolic geometry. The gyrogroup-theoretic techniques developed in this book for use in relativity physics and in hyperbolic geometry allow one to solve old and new important problems in relativity physics. A case in point is Einstein's 1905 view of the Lorentz length contraction, which was contradicted in 1959 by Penrose, Terrell and others. The application of gyrogroup-theoretic techniques clearly tilt the balance in favor of Einstein.
Download the book Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen