Ebook: Polynomial identities and asymptotic methods
Author: Antonio Giambruno Mikhail Zaicev
- Series: American Mathematical Society Mathematical Surveys and Monographs Volume 122
- Year: 2005
- Publisher: American Mathematical Society
- Language: English
- djvu
This book gives a state of the art approach to the study of polynomial identities satisfied by a given algebra by combining methods of ring theory, combinatorics, and representation theory of groups with analysis. The idea of applying analytical methods to the theory of polynomial identities appeared in the early 1970s and this approach has become one of the most powerful tools of the theory. A PI-algebra is any algebra satisfying at least one nontrivial polynomial identity. This includes the polynomial rings in one or several variables, the Grassmann algebra, finite-dimensional algebras, and many other algebras occurring naturally in mathematics. The core of the book is the proof that the sequence of codimensions of any PI-algebra has integral exponential growth - the PI-exponent of the algebra. Later chapters further apply these results to subjects such as a characterization of varieties of algebras having polynomial growth and a classification of varieties that are minimal for a given exponent. Results are extended to graded algebras and algebras with involution. The book concludes with a study of the numerical invariants and their asymptotics in the class of Lie algebras. Even in algebras that are close to being associative, the behavior of the sequences of codimensions can be wild. The material is suitable for graduate students and research mathematicians interested in polynomial identity algebras
Download the book Polynomial identities and asymptotic methods for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)