Ebook: How to Count: An Introduction to Combinatorics, Second Edition
Author: R.B.J.T. Allenby Alan Slomson
- Tags: Operating Systems Android BSD Linux Macintosh Solaris Unix Windows Computers Technology Reference Test Preparation Almanacs Yearbooks Atlases Maps Careers Catalogs Directories Consumer Guides Dictionaries Thesauruses Encyclopedias Subject English as a Second Language Etiquette Foreign Study Genealogy Quotations Survival Emergency Preparedness Words Grammar Writing Research Publishing Algebra Abstract Elementary Intermediate Linear Pure Mathematics Science Math Combinatorics Discrete Computer New
- Series: Discrete Mathematics and Its Applications
- Year: 2010
- Publisher: Chapman and Hall/CRC
- Edition: 2
- Language: English
- pdf
Emphasizes a Problem Solving Approach
A first course in combinatorics
Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics.
New to the Second Edition
This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises.
Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.