Online Library TheLib.net » Congruences for L-Functions
cover of the book Congruences for L-Functions

Ebook: Congruences for L-Functions

00
26.01.2024
0
0

In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o




This book provides a comprehensive and up-to-date treatment of research carried out in the last twenty years on congruences involving the values of L-functions (attached to quadratic characters) at certain special values. There is no other book on the market which deals with this subject. The book presents in a unified way congruences found by many authors over the years, from the classical ones of Gauss and Dirichlet to the recent ones of Gras, Vehara, and others. Audience: This book is aimed at graduate students and researchers interested in (analytic) number theory, functions of a complex variable and special functions.
Download the book Congruences for L-Functions for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen