Ebook: Large deviations for stochastic processes
Author: Jin Feng Thomas G. Kurtz
- Genre: Mathematics // Probability
- Series: Mathematical Surveys and Monographs
- Year: 2006
- Publisher: American Mathematical Society
- Edition: draft
- Language: English
- pdf
The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.
Download the book Large deviations for stochastic processes for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)