Online Library TheLib.net » A Proof of the Q-Macdonald-Morris Conjecture for Bcn
cover of the book A Proof of the Q-Macdonald-Morris Conjecture for Bcn

Ebook: A Proof of the Q-Macdonald-Morris Conjecture for Bcn

00
27.01.2024
1
0
Macdonald and Morris gave a series of constant term $q$-conjectures associated with root systems. Selberg evaluated a multivariable beta type integral which plays an important role in the theory of constant term identities associated with root systems. Aomoto recently gave a simple and elegant proof of a generalization of Selberg's integral. Kadell extended this proof to treat Askey's conjectured $q$-Selberg integral, which was proved independently by Habsieger. This monograph uses a constant term formulation of Aomoto's argument to treat the $q$-Macdonald-Morris conjecture for the root system $BC_n$. The $B_n$, $B_n^{lor}$, and $D_n$ cases of the conjecture follow from the theorem for $BC_n$. Some of the details for $C_n$ and $C_n^{lor}$ are given. This illustrates the basic steps required to apply methods given here to the conjecture when the reduced irreducible root system $R$ does not have miniscule weight.
Download the book A Proof of the Q-Macdonald-Morris Conjecture for Bcn for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen