Ebook: Energy Geostructures
Author: Lyesse Laloui Alice Di Donna
- Year: 2013
- Publisher: Wiley-ISTE
- Edition: 1
- Language: English
- pdf
The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge of these structures. It details the procedures that are currently being applied in the regions where geostructures are being implemented. The book is divided into three parts, each of which is divided into chapters, and is written by the brightest engineers and researchers in the field. After an introduction to the technology as well as to the main effects induced by temperature variation on the geostructures, Part 1 is devoted to the physical modeling of energy geostructures, including in situ investigations, centrifuge testing and small-scale experiments. The second part includes numerical simulation results of energy piles, tunnels and bridge foundations, while also considering the implementation of such structures in different climatic areas. The final part concerns practical engineering aspects, from the delivery of energy geostructures through the development of design tools for their geotechnical dimensioning. The book concludes with a real case study.
Contents
Part 1. Physical Modeling of Energy Piles at Different Scales
1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures, Alice Di Donna and Lyesse Laloui.
2. Full-scale In Situ Testing of Energy Piles, Thomas Mimouni and Lyesse Laloui.
3. Observed Response of Energy Geostructures, Peter Bourne-Webb.
4. Behavior of Heat-Exchanger Piles from Physical Modeling, Anh Minh Tang, Jean-Michel Pereira, Ghazi Hassen and Neda Yavari.
5. Centrifuge Modeling of Energy Foundations, John S. McCartney.
Part 2. Numerical Modeling of Energy Geostructures
6. Alternative Uses of Heat-Exchanger Geostructures, Fabrice Dupray, Thomas Mimouni and Lyesse Laloui.
7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading, Maria E. Suryatriyastuti, Hussein Mroueh , Sébastien Burlon and Julien Habert.
8. Energy Geostructures in Unsaturated Soils, John S. McCartney, Charles J.R. Coccia , Nahed Alsherif and Melissa A. Stewart.
9. Energy Geostructures in Cooling-Dominated Climates, Ghassan Anis Akrouch, Marcelo Sanchez and Jean-Louis Briaud.
10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil, Maria E. Suryatriyastuti, Hussein Mroueh and Sébastien Burlon.
11. Ground-Source Bridge Deck De-icing Systems Using Energy Foundations, C. Guney Olgun and G. Allen Bowers.
Part 3. Engineering Practice
12. Delivery of Energy Geostructures, Peter Bourne-Webb with contributions from Tony Amis,
Jean-Baptiste Bernard, Wolf Friedemann, Nico Von Der Hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin.
13. Thermo-Pile: A Numerical Tool for the Design of Energy Piles, Thomas Mimouni and Lyesse Laloui.
14. A Case Study: The Dock Midfield of Zurich Airport, Daniel Pahud.
About the Authors
Lyesse Laloui is Chair Professor, Head of the Soil Mechanics, Geoengineering and CO2 storage Laboratory and Director of Civil Engineering at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.
Alice Di Donna is a researcher at the Laboratory of Soil Mechanics at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.
Chapter 1 Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures (pages 3–21): Alice Di Donna and Lyesse Laloui
Chapter 2 Full‐scale In Situ Testing of Energy Piles (pages 23–43): Thomas Mimouni and Lyesse Laloui
Chapter 3 Observed Response of Energy Geostructures (pages 45–77): Peter Bourne‐Webb
Chapter 4 Behavior of Heat‐Exchanger Piles from Physical Modeling (pages 79–97): Anh Minh Tang, Jean‐Michel Pereira, Ghazi Hassen and Neda Yavari
Chapter 5 Centrifuge Modeling of Energy Foundations (pages 99–115): John S. McCartney
Chapter 6 Alternative Uses of Heat‐Exchanger Geostructures (pages 119–138): Fabrice Dupray, Thomas Mimouni and Lyesse Laloui
Chapter 7 Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading (pages 139–155): Maria E. Suryatriyastuti, Hussein Mroueh and Sébastien Burlon
Chapter 8 Energy Geostructures in Unsaturated Soils (pages 157–173): John S. McCartney, Charles J.R Coccia, Nahed Alsherif and Melissa A. Stewart
Chapter 9 Energy Geostructures in Cooling‐Dominated Climates (pages 175–191): Ghassan Anis Akrouch, Marcelo Sanchez and Jean‐Louis Briaud
Chapter 10 Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil (pages 193–209): Maria E. Suryatriyastuti, Hussein Mroueh and Sébastien Burlon
Chapter 11 Ground‐Source Bridge Deck De‐icing Systems Using Energy Foundations (pages 211–225): C. Guney Olgun and G. Allen Bowers
Chapter 12 Delivery of Energy Geostructures (pages 229–263): Peter Bourne‐Webb, Jean‐Baptiste Bernard, Wolf Friedemann, Nico von der hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin
Chapter 13 Thermo‐Pile: A Numerical Tool for the Design of Energy Piles (pages 265–279): Thomas Mimouni and Lyesse Laloui
Chapter 14 A Case Study: The Dock Midfield of Zurich Airport (pages 281–296): Daniel Pahud