Ebook: Geometric Design of Linkages
- Genre: Mathematics // Geometry and Topology
- Tags: Systems Theory Control, Robotics and Automation, Control, Algebraic Geometry
- Series: Interdisciplinary Applied Mathematics 11
- Year: 2011
- Publisher: Springer-Verlag New York
- City: New York
- Edition: 2
- Language: English
- djvu
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a workpiece, or end effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end effector.
This new edition includes research results of the past decade on the synthesis of multiloop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces the linear product decomposition of polynomial systems and polynomial continuation solutions. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are used throughout to demonstrate the theory.
Review of First Edition: "...I found the author had provided an excellent text that enabled me to come to terms with the subject. Readers with an interest in the area will find the volume rewarding." -The Mathematical Gazette (2001)
This book presents the mathematical theory of design for articulated systems called linkages. Robot manipulators, walking machines, and mechanical hands are examples of these systems, all of which rely on simple mechanical constraints to provide a complex workspace for an end-effector. The emphasis of this text is on linkage systems with fewer degrees of freedom than that of a typical robot arm and, therefore, more constraints. The focus is on sizing these constraints to guide the end-effector through a set of task positions. Formulated in this way the design problem is purely geometric in character. The theory is developed for planar linkages before moving to devices that constrain spatial rotation and general spatial displacement. This allows intuition developed from plane geometry to provide insight into the geometry of points and lines in space. This book will be useful to mathematics, engineering, and computer science departments teaching courses on geometric design, geometric modeling, and computer-aided design, as well as the theory of design for mechanical systems and robots.