Ebook: Optimization: Algorithms and Consistent Approximations
Author: Elijah Polak (auth.)
- Genre: Computers // Algorithms and Data Structures
- Tags: Calculus of Variations and Optimal Control, Optimization, Applications of Mathematics, Systems Theory Control, Operation Research/Decision Theory
- Series: Applied Mathematical Sciences 124
- Year: 1997
- Publisher: Springer-Verlag New York
- Edition: 1
- Language: English
- djvu
This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomes transparent.
This book covers algorithms and discretization procedures for the solution of nonlinear progamming, semi-infinite optimization and optimal control problems. Among the important features included are the theory of algorithms represented as point-to-set maps, the treatment of min-max problems with and without constraints, the theory of consistent approximation which provides a framework for the solution of semi-infinite optimization, optimal control, and shape optimization problems with very general constraints, using simple algorithms that call standard nonlinear programming algorithms as subroutines, the completeness with which algorithms are analysed, and chapter 5 containing mathematical results needed in optimization from a large assortment of sources.
Readers will find of particular interest the exhaustive modern treatment of optimality conditions and algorithms for min-max problems, as well as the newly developed theory of consistent approximations and the treatment of semi-infinite optimization and optimal control problems in this framework.
This book presents the first treatment of optimization algorithms for optimal control problems with state-trajectory and control constraints, and fully accounts for all the approximations that one must make in their solution.It is also the first to make use of the concepts of epi-convergence and optimality fuctions in the construction of consistent approximations to infinite dimensional problems.
Graduate students, university teachers and optimization practitioners in applied mathematics, engineering and economics will find this book useful.